In Vivo Near-Infrared Fluorescence Imaging of Apoptosis Using Histone H1-Targeting Peptide Probe after Anti-Cancer Treatment with Cisplatin and Cetuximab for Early Decision on Tumor Response

نویسندگان

  • Hyun-Kyung Jung
  • Kai Wang
  • Min Kyu Jung
  • In-San Kim
  • Byung-Heon Lee
چکیده

Early decision on tumor response after anti-cancer treatment is still an unmet medical need. Here we investigated whether in vivo imaging of apoptosis using linear and cyclic (disulfide-bonded) form of ApoPep-1, a peptide that recognizes histone H1 exposed on apoptotic cells, at an early stage after treatment could predict tumor response to the treatment later. Treatment of stomach tumor cells with cistplatin or cetuximab alone induced apoptosis, while combination of cisplatin plus cetuximab more efficiently induced apoptosis, as detected by binding with linear and cyclic form of ApoPep-1. However, the differences between the single agent and combination treatment were more remarkable as detected with the cyclic form compared to the linear form. In tumor-bearing mice, apoptosis imaging was performed 1 week and 2 weeks after the initiation of treatment, while tumor volumes and weights were measured 3 weeks after the treatment. In vivo fluorescence imaging signals obtained by the uptake of ApoPep-1 to tumor was most remarkable in the group injected with cyclic form of ApoPep-1 at 1 week after combined treatment with cisplatin plus cetuximab. Correlation analysis revealed that imaging signals by cyclic ApoPep-1 at 1 week after treatment with cisplatin plus cetuximab in combination were most closely related with tumor volume changes (r2 = 0.934). These results demonstrate that in vivo apoptosis imaging using Apopep-1, especially cyclic ApoPep-1, is a sensitive and predictive tool for early decision on stomach tumor response after anti-cancer treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment

Subpopulations of cells that escape anti-cancer treatment can cause relapse in cancer patients. Therefore, measurements of cellular-level tumor heterogeneity could enable improved anti-cancer treatment regimens. Cancer exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD. The optical redox ratio (fluorescence intensity of NAD(P)H divide...

متن کامل

Evaluation of 99m Tc-MccJ25 peptide analog in mice bearing B16F10 melanoma tumor as a diagnostic radiotracer

Objective(s): Despite recent advances in treatment modalities, cancer remains a major source of morbidity and mortality throughout the world. Currently, the development of sensitive and specific molecular imaging probes for early diagnosis of cancer is still a problematic challenge. Previous studies have been shown that some of the antimicrobial peptides (AMPs) exhibit...

متن کامل

In vivo photoacoustic imaging of chemotherapy-induced apoptosis in squamous cell carcinoma using a near-infrared caspase-9 probe.

Anti-cancer drugs typically exert their pharmacological effect on tumors by inducing apoptosis, or programmed cell death, within the cancer cells. However, no tools exist in the clinic for detecting apoptosis in real time. Microscopic examination of surgical biopsies and secondary responses, such as morphological changes, are used to verify efficacy of a treatment. Here, we developed a novel ne...

متن کامل

Carbon Nanotubes as Near Infrared Radiation (NIR) Molecules for Cancer treatment

Introduction: The photo-thermal therapy by nanoparticles has been recently known as an efficient strategy for the cancer treatment. Carbon nanotubes (CNTs) have been extensively studied in biomedical application due to the easy uptake and high permeability in the cells, biocompatibility in biological environments and also their unique electrical, thermal properties. They genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014